9 Content: Engineering Studies HSC course

Engineering application module: Civil structures

30 hours indicative time

Select one or more civil structures in this module. Some examples of civil structures include: bridges, roads, dams, buildings, cranes and lifting devices, parklands and children's playgrounds and equipment.

Outcomes

A student:

- H1.2 differentiates between the properties and structure of materials and justifies the selection of materials in engineering applications
- H2.1 determines suitable properties, uses and applications of materials, components and processes in engineering
- H3.1 demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering practice
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H3.3 develops and uses specialised techniques in the application of graphics as a communication too
- H4.1 investigates the extent of technological change in engineering
- H4.2 applies knowledge of history and technological change to engineering-based problems
- H5.1 works individually and in teams to solve specific engineering problems and prepare engineering reports
- H4.3 applies understanding of social, environmental and cultural implications of technological change in engineering to the analysis of specific engineering problems
- H6.1 demonstrates skills in research and problem-solving related to engineering
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

1.	1. Historical and societal influences				
St	udents learn about:	Notes:			
-	historical developments of civil structures				
	engineering innovation in civil structures and their effect on people's lives				
•	construction and processing materials used in civil structures over time				
•	environmental implications from the use of materials in civil structures				

Students learn to:		Notes:	
	outline the history of technological change		
	investigate the construction processes and materials used in civil structures from a historical point of view		

•	critically examine the impact of	
	civil structures upon society and	
	the environment	

2. Engineering mechanics				
Students learn about:	Notes:			
 truss analysis actions (loads) reactions pin jointed trusses only method of joints method of sections 	 Reactions Usually label RI and Rr Pin Joints Pin Joints And the second second			

	Shear Stress
	 Shear Stress occurs if the load creates a hole in the member, hence we must take the thickness of the material. NOTE: The Shear Area, is more of a perimeter of cross section x thickness. Shear Force
	$\sigma = \frac{1}{\text{Shear Area}}$
	$\sigma = \text{Stress} (\text{Pa})(\text{N/m}^2)$
	Shear Force = Force or Load (N)
•	Compressive stress
	– Compressive Stress measures the contraction of structural members. $ ightarrow$ $ ightarrow$
	· Tensile stress
	– Tensile Stress measures the extension of structural members. \leftarrow $ ightarrow$
-	Engineering and true stress
· ·	Engineering stress
	 Engineering Stress is simply Stress. It is known as Engineering Stress due to the changing cross section area of the specimen when a load is applied and the material experience necking down, losing stress and hence losing area, making it hard to calculate. Hence, Engineering Stress, takes the original area.
	True stress
	 True Stress is used or safety purpose, ensuring the maximum allowable stress can be done. Must be lower than UTS and Yield Stress.
_	Yield stress, proof stress, toughness, Young's modulus, Hooke's law, engineering applications:
	Yield stress:
	 Yield stress is the value of stress at the Progressive Yield Point on the Stress/Strain diagram. It is used to calculate the FOS for ductile materials.
•	Proof stress:
	 Proof stress is when the approximation of yield on materials that do not show a definite yield point.
	 Textbook definition: is the amount of stress necessary to bring about a amount of permanent strain in a material.
	 On Stress/Strain diagram, the tangent at the point proportional limit. The intersection on the graph will define proof stress.
	Toughness:
.	Young's Modulus:
	 Also, known as Modulus of stiffness OR Modulus of Elasticity. Measure by the gradient of the linear slope on the Stress/Strain Diagram. This measures the stiffness.
	Hooke's Law:

 Hooke's Law is the linear relationship of the Stress/Strain Diagram.
"Stress is proportional to strain up to the Elastic Limit"
$E = \sigma/\epsilon$
E = Hooke's Constant (gradient of the proportionity of stress and stain)
$\sigma = $ Stress (Pa)
$\varepsilon = $ Strain (Ratio)
 Engineering applications:
 Applications like UTS, necking down, work hardening, plastic deformation, elastic region, etc.
 Factor of safety (FoS)
 Since material should be working at stresses under the UTS, or breaking point, the Factor of safety is an allowable stress or
tolerance a material can undergo. It is the ratio of Working stress.
 Material is ductile:
Yield Stress
$FoS = \frac{FoS}{Maximum allowable stress (Safety Working Stress)}$
 Material is brittle:
UTS
$FoS = \frac{OTS}{Maximum allowable stress (Safety Working Stress)}$
The FoS in building and structure are usually large to ensure that there is no chance of failure.
The FoS in aircraft should be as low as possible due to issues of weight.
 Stress/Strain Diagram:
 First, there is a linear relationship of increase in stress and increase in strain. In this zone the sketched specimen, when
released will return to its original shape [No deformation]. This occurs up to the Proportional Limit. This is region of no
deformation is known as the Elastic Region.
 The slope of the linear line is Modulus of Stiffness/Elasticity or Young's Modulus. This gives rise to Hooke's Law
 At proportional Limit, the specimen sketch over it will be identified deformation. This is also known as Yield stress.
 Next is the Elastic Limit is the stress up to which the strain is elastic. At this point the specimen can still return to its original
shape.
 Next is the Progressive Yield, which shown an increasing curve, meaning that beyond this point plastic deformation.
 As Strain is increased Stress is increased up to the maximum point known as UTS. This is the Ultimate Tensile Strength, having
the maximum possible engineering stress the specimen can take in tension.

Students learn to:	Notes:
 apply mathematical and/or graphical methods to solve problems related to the design of pin jointed trusses 	

evaluate the importance of the stress/strain diagram in understanding the properties of materials	 Malleability The ability for a material to be hammered and rolled in thin sheets with breaking. Ductility The ability for a material to rolled into thin wires. Ductile materials are not the same as Malleable materials, for Ductility can be stretch and elongated. Ductility is portrayed by the Strain Axis. A short strain graph will mean low ductility. A long strain graph will mean high ductility. Strength The ability to withstand heavy load without breaking. Strength is portrayed by the Ultimate Tensile Strength. Stiffness The amount of resistant in deformation when a load is applied. Stiffness is related to flexibility of an object, (More flexible, less stiffness). Stiffness is portrayed as the linear line on stress/strain, up to the Elastic Limit. Hardness The ability for a material to resist cracking, dents, scratching and abrasion. Plasticity The ability for a material undergo permanent deformation without rapture. Plasticity is portrayed by the plastic zone. Toughness The amount of energy that a material can absorb before rapture. Toughness is measured by the area under the curve.
 calculate and graph the bending stress and shear force of simply supported beams involving vertical point loads only 	•
 describe the effect of uniformly distributed loads on a simple beam, without calculations 	
 apply mathematical and/or graphical methods to solve 	

problems related to stress and strain	
apply mathematical methods to solve problems related to materials used in civil structures	

3. Engineering materials			
Students learn about:	Notes:		
 testing of materials specialised testing of engineering materials and systems X-ray 	 They test for the There are two for the end of the	e hardness, stiffness, to ypes of tests tests: s the physical breaking of engineers to watch and ctive tests: s external device to scar al. of destroy the material, fucture:	analyse materials behaviour under load. In and examine to fault and determine properties without the need to break or deform the hence provides more efficiency to material.
	Test X-ray	Type Non-Destructive	Use To determine if cavities are present
	Dye Penetrant	Non-Destructive	To find small cracks in the surface by placing a dye on the surface, applying a developer and then examining the surface after cleaning.
	Ultrasonic	Non-Destructive	Ultrasonic pulses are used to determine if cavities are present
	Tensile	Destructive	Used to determine the tensile strength of materials used. Test piece is stretched and load extension are recorded

	Compressive	Destructive	Used to determine the compressive strength of materials used. Test pieces is compressed and load and deformation are recorded.	
	Transverse	Destructive	This test is used to determine a materials performance when undergoing bending and shear.	
	Torsion	Destructive	Torsion tests are done on materials to see how they will cope with twisting forces.	
testing of concrete	 Two main testing method for concrete Slump test A slump is done to determine the concrete's fluidity for casting. It measures the consistency of the concrete, in ratio with the mixture of water within the concrete. Method Concrete is filled inside a slump cone (cylindered mould). A rod is used to tap the cone and is removed, leaving a coned shape concret exposed. Results If the concrete collapses, it means that it is too wet. If the concrete cracks, breaks or crumbles down, it means that the concrete lack fluidity and is too dry.			
 crack theory crack formation and growth failure due to cracking repair and/or elimination of failure due to cracking 	 Cracks are imperfections within a material and are created when the materials have splits. Cracks tend to propagate and cause further cracks as well as larger cracks, which eventually causes the material to split and fail. Crack Formation and growth Formation Cracks are mainly formed when an applied load is placed in a wrong and weak position. Other reasons can be the due to the incorrect procedures of manufacturing processes (forging, machining), the applying inappropriate heat that causes thermal expansion or simply corrosion. Growth 			

	 When a material is placed under a concentrated load, it will release strain energy, slowly causing a crack as the bonds of resisting the load weakens. With this resilience decrease and will start to propagate when it reaches it critical crack length. When the cracks rapture and is unable to handle the load, it will fail and break, leaving the neighbours bond to withstand the load (meaning that more stress is placed on that bond). The remaining bonds will fail as larger and larger load is applied to neighbouring bonds causing a domino effect. Failure Due To Cracking Failure begins are the domino effects starts to take effect. The as the adjacent bonds take on more load and stress, they will fail over to the next which in turn fail to the point of failure. All the load is placed in the tip of crack. Failure due to cracking. All this can be prevented, if the applied load doesn't exceed the threshold, and thus the crack will halt. Critical Crack Length The length that would cause the growth of the crack Brittle materials will have very short CCL. Ductile will have long CCL.
 ceramics structure/property relationships and their application to civil structures glass cement bricks 	 Ceramics are a type of material that consist of inorganic and non-metallic properties. Ceramics in general semi-metals and are brittle and hard. Structure/property relationships and their application to civil structures Glass Amorphous solid, meaning a non-crystalline material The viscous liquid material, makes the structural feature of glass transparent. Glass is low in toughness, hence it very brittle and weak in tension. Window glass is a mixture of silica [SiO2], soda [Na20] and lime [CaO] Glass creation [refining and annealing] Is created by a mixture of materials, then heated in a furnace until it is in a liquid state. Then it is homogenised and refined [removal of bubbles]. Glass is formed, by allowing air which allows air force to be inside the molten glass. Annealing is finalised to remove the stress of glass. Glass brittle and prone to breaking on impact can be overcome by toughened glass. Toughened glass formation [tempering] Is created by heating the glass pane then the outer surfaces are quickly cooled by blasts of cold air, leaving the surface cool and the interior hot.

	 As the interior cools, it contracts and places the exterior in compression. Which prevents from cracking. Cement Cement is NOT concrete Cement is one of the constitution for concrete [ceramic]. Whereas concrete is a mixture of cement, water and aggregate [composites]. They are formed by complex reaction when alumina, soda and lime are reacted at high temperatures. Two types of cement Hydraulic cement These types of cement will harden underwater. Common hydraulic cement is Portland cement → Silicate gel. Non-Hydraulic cement These types of cement will not harden underwater. They are hardened in other methods. Cement powder is a mixture of various materials. They can be formed into cement. Cement creation Limestone and shale are both crushed, then mixed together. The mixture is then placed in the kiln at an approximated temperature of 1500 C. In the kiln, the mixture will form clinkers and are grounded. Clinkers are then mixed with gypsum [around 5 %]. They mixed and are constantly grounded and refine until it becomes cement powder. Bricks Bricks are generally rectangular prism that are made from clay, but more commonly concrete. Bricks are first built in rectangular prism with clay, then fired in the kiln to create a permanent brick shape clay. Bricks have holes embedded for air to flow through.
 composites timber concrete (reinforced, pre- and post- tensioned) asphalt paved surface laminates geotextiles 	 Composite materials are made from two or more constitutes of differing materials. They are a combination of Fibre and Matrix. Fibres is the material that carries the load. Matrix is the material that supports and protects the fibre and corrosion and allows for transfer of load. Type of composites Timber Timber are organic (natural) composite. They are lightweight and are used to achieve other composites like fibreglass and carbon fibre.

	Hardwood: Porous materials that have pores and vessel running through the structure and allow for nutrient to be carried
	Softwood: Non-porous material that have a neater, more uniform structure.
	 Advantages of Timber
	 Have an excellent strength/weight ratio which can withstand heavy load with their lightweight properties.
	 Great performance in bending.
	 Disadvantage of Timber
	 Weak in exposure outside. The weather that cause timber to rot and moist.
	 Also, pest like termites will attack and feed of timber.
	 Concrete (reinforced, pre- and post- tensioned)
	 Concrete is made from Three main constituents, water, aggregate and cement. They are fireproof and does not corrode.
	However low in tension and strong in compression making them in toughness.
	NOTE: Cement is not concrete.
	 Reinforced concrete
	 Steel and iron can be inserted as fibre to help improve the strength. Rods and steel mesh can be placed to counter the
	tensile load and make concrete resistant to failure.
	Pre-stressed Concrete
	 Pre-stressed concrete consist of placing high tensile cables and rods into the reinforced concrete. When the cables are
	removed, the concrete beam is manipulated into compression, allowing more expected load.
	Two types of Prestressing: Pre-tensioned and Post-tensioned.
	Pre-tensioned
	 Concrete is cast around tendon which are already in tension. Once the concrete sets, the external tension from the steel
	tendon are removed placing the structure in compression.
	Post-tensioned
	 Concrete is cast normally into it is beams with hole where steel tendon rods can be placed. The steels rods are
	stretched by a hydraulic jack, placing the rod in compression and allowing this compressive force to be transferred to
	the beam. Once the rods are removed, the gaps are filled with mortar.
	 Asphalt paved surface
	 Asphalt (tarmac) is a high viscous fluid that is extracted from crude oil.
	 Mainly used in roads.
	 Used for road paving because of its toughness and crack resistant (bitumen). Asphalt are laid hot and when cooled, the
	bitumen solidifies making them hard and resistive. Hence they have less wear, and do not generate much noise.
	– Laminates
۰	

	 Lamination is the process of materials being sandwich and stacked together to increases reliability. Laminated glass Laminated glass is the formation to shatter-resistant glass. Layers of glass are compressed with a vinyl in between. They are heated to remove air bubbles and cooled to become prevent cracks. This increases strength and insinuates noise making. Plywood Plywood consist of layers of wood that are arranged and compressed so that the grains are perpendicular to each other. This is done to overcome the timber's weakness. It increases the cracking power compared to one full value wood. Also, excellent noise insulator.
 corrosion corrosive environments dry corrosion, wet corrosion, stress corrosion, galvanic corrosion 	 Corrosion is defined to be the chemical deterioration of the material over time. Corrosion doesn't necessary affect metals, ceramic and polymer. Corrosive environments Oxidation Oxidation occurs when metal loses electron and happens at the anode. Oxidation == loss Reduction Reduction is the consumption of electron and occurs at the cathode. Reduction is the opposite of oxidation. Reduction == gain Dry corrosion, Wet corrosion, Stress corrosion, Galvanic corrosion Dry corrosion occurs through the chemical reaction when metal reacts with oxygen in the air.

	 They are sensitive to temperature, and hence it reacts much faster under an application of heat.
	 An oxide layer form known as rust and forms on the surface of the material, causing damage.
	 Some materials are porous; hence corrosion will occur deep. This is known as active corrosion.
	 Wet corrosion
	 Wet corrosion occurs when a metal is placed in a galvanic cell, electrolyte or fluid.
	 It is an electro-chemical reaction.
	 Uniform Attack
	 When a metal is placed in electrolyte, some parts will become anodic and other cathodic. The location of the two
	will continuously change resulting in uniform corrosion.
	 Galvanic Attack
	– Galvanic corrosion
	 Concentration cells
	– Stress cells
	 Protection from corrosion
	 Corrosion in all metal is bound to occurs, though they will occur at different rates. Protection is necessary to prolong the use of
	metals.
	- Cathodic Protection
	 The protected object is made mainly of cathodes and hence provide protection from corroding.
	 Sacrificial anodes
	 Highly active metals (Zinc, Aluminium, Magnesium) are bolted onto the objects, creating a protection layer that acts as
	sacrificial plates blocking the absorbing the corrosion and protecting the metal.
	 Coating
	The metal is painted with steel alloy (Stainless steel), where a protective layer is applied to prevent corrosion. However, seeing method see screened off over time, hence requiring requiring requirements.
	coating method can scrapped off over time , hence requiring regularly maintenance .
	 Hot Dip Galvanising (Best Method)
	The metal is cleaned and dipped in molten zinc, as Zinc is the best protection from corrosion. When done, the metal is
	coated with a layer of zinc carbonate that is extremely corrosion resistant.
 recyclability of materials 	 Steel D.O.F. (hasis surgery formass) = 25% assured start as a scillate
	 B.O.F (basic oxygen furnace) – 25% recycled steel possible
	 E.A.F (electric arc furnace) – 100% recycled steel possible
	Concrete

 Concrete can be recycled by crushing and breaking in smaller piece. This results in them being weaker then it original state, as they are commonly used for rubble and cheap covering. Wood
 Woods is the most recyclable material as woods scraps can be used as chips for garden mulch, playground covering or made in wood composites for cardboards, paper and reused furniture. Asphalt
 Asphalts are stones made from petroleum, and can be recycled by crushing them and refining with other materials to reproduce stronger asphalt.
 Glass Glass can be smashed and burned in furnace to reproduce glass again.

Students learn to:	Notes:
 describe basic and specialized testing conducted on materials used in civil structures 	
 examine the properties, uses and appropriateness of materials used in civil structures 	
 examine how failure due to cracking can be repaired or eliminated 	
 make appropriate choices of materials and processes for use in civil structures 	
 investigate the relationship of structure to properties of materials and their use in civil structures 	
 explain the special properties produced by composite materials 	

•	compare simple reinforced, pre- tensioned and post-tensioned structures	
•	evaluate the significance of corrosion problems in civil structures	
•	describe methods used to protect civil structures against corrosion	 Hot Dip Galvanising with Molten Zinc, as they will provide a protective layer of corrosion resistive property, or simply coating or painting steel alloy, to produce stainless steel.
•	describe methods used for recycling materials when civil structures are replaced	

4. Communication	
Students learn about:	Notes:
Australian Standard (AS 1100)	 AS 1100 is an Australian Standard for technical drawing, both for mechanical and architecture designs. These drawings will be universal around Australia, and ONLY Australia.
 orthogonal assembly dimensioned drawings 	 In Buts and Bolts drawing, they are usually specified in the AS 1100. Example: M10 x 1 Where M = Metric (mm) 10 = diameter of the thread (mm) 1 = pitch of thread (mm)
 freehand pictorial drawings 	Drawing
 graphical mechanics graphical solutions to engineering problems 	 Drawing
 computer graphics 	Drawing

 Computer Aided Drawing (CAD) applications for solving problems 	
collaborative work practices	 Drawing
Engineering Report writing	Drawing

Students learn to:	Notes:
 produce orthogonal assembly dimensioned drawings applying appropriate Australian Standard (AS 1100) 	 Australian Standard 1100 (AS 1100) are used for Nut and Bolt Drawing.
 produce freehand pictorial drawings 	 Drawing
 apply graphical methods to the solutions of relevant problems 	 Drawing
 describe and/or use software to solve problems 	 Drawing
 work with others and identify the benefits of working as a team 	 Drawing
 complete an Engineering Report based on the analysis and synthesis of an aspect of civil structures using appropriate computer software 	 Drawing